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EXECUTIVE SUMMARY

This report investigates the main implementation issues of a particular adaptive smart antenna algo-
rithm, especially tailored for ground terminals receiving OFDM transmission from a HAP, based on the
IEEE 802.16a standard.

The first issue considered is the stability of the algorithm, which can be seriously affected when
quantization of the data is performed. The second issue is the implementation complexity, repre-
sented by the number of machine instructions to be computed per second; it yields a constraint on the
minimum clock frequency required on a real-world receiver. The third issue, clearly related, is the
number of quantization bits used to represent the data handled by the algorithm in its different parts,
because it determines both the quantization error and the size of the requires memory.

It is worth firstly noticing that the beamforming approach discussed hereafter is an extension of
that presented in Deliverable D17 [1], developed for a Single-Carrier IEEE 802.16 communication link.
Since the algorithm performance is, in some way, scalable with the number of (sub)carriers, the imple-
mentation analysis discussed in this report is directly related to the Single-Carrier case.

In order to select a computationally light architecture, a time domain, or pre-FFT, beamforming
approach is considered, whose characteristics are also well suited for the flat fading channel that may be
experienced between HAP and train. In OFDM systems there is the possibility to work in the presence of
a multitude of input signals simultaneously carried by orthogonal sub-carriers in the frequency domain.
To exploit this fact, a multirank beamforming algorithm based on the standard Recursive Least Squares
approach is the starting point of the analysis. However, with standard RLS approach, Multirank RLS
is unstable if developed with finite precision arithmetic, and it requires prohibitively large computational
effort. Thus, following the option already discussed in [1], the QR Decomposition-based recursive
implementation is of the utmost interest to obtain a stable and low-complexity algorithm.

The Multirank QRD-RLS is proved to be stable on a finite precision arithmetic device, provided
that a sufficient wordlength is used, and to require a lower computational effort than the standard
Multirank RLS. A comparative analysis of the main implementation issues is also presented. To solve
the Least-Square problem formulation, in the rank-1 as well as the rank-P case, it is a common practice
to exploit the fact that each auto-correlation matrix and each cross-correlation vector involved in the
formal solution of the problem can be written as Rank-P updates of the same quantities evaluated at the
previous time instant. Then, a recursive implementation of the solution can be conceived, by computing
a series of P subsequent Rank-1 updates, then applying the matrix inversion lemma (Multirank RLS).
Unfortunately, because of the numerical instability of the standard RLS algorithm, perturbations tend to
be amplified during the recursions, independently from the rank. This problem is solved by the QRD
approach and it is exploited in the Multirank QRD-RLS.

In addition, the Multirank QRD-RLS shows good properties wth respect to the finite precision imple-
mentation:

• it will be shown that an upper bound exists for the entries of the autocorrelation matrix and the
cross-correlation vector;

• the algorithm can be implemented with a relatively low computational effort in programmable logic.

In terms of Doppler resilience capability, the Multirank QRD-RLS and Multirank RLS behave iden-
tically with infinite precision arithmetic, while they are different in terms of computational effort and
numerical stability. Furthermore, as rank increases, the beamformer approaches the optimum solution
more closely and more quickly. In the signal and environmental conditions considered in the report,
the Doppler shift becomes critical above a ±9 kHz threshold, whereas, below that threshold, a proper
choice of the algorithm parameters allows compensation of the Doppler shift.

For implementation of the algorithms on a finite precision arithmetic device, the problem of wordlength,
i.e. the number of bits used to represent each data value in the algorithm, must be addressed. The
analysis here considers both an analytical and an empirical study, that show good agreement. Thus,
the most suitable choice for the wordlength of the integer part of the data is 6, i.e., 5 bits for the modulus
and one for the sign, while, for the fractional part, significantly higher numbers of bit are necessary to
achieve low residual errors w.r.t. the unquantized algorithm. A good compromise is shown to be 14 bits
for the fractional parts. Summing up, a 20 bits total wordlength is necessary to guarantee acceptable
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performance, whilst 26 bits are required for the computation of certain parts of the QRD algorithm that
are particularly sensitive to round-off errors.

Nonetheless, irrespective of wordlength, the quantized implementation of the Multirank RLS is un-
stable and tends to diverge, while the QRD-RLS is able to preserve stability.

Finally, hardware device has been synthesized using the VHDL language, in order to validate the
developed algorithm. The results of the VHDL synthesis match closely those obtained by computer
simulations; this demonstrates that the proposed algorithm can be successfully synthesized in pro-
grammable logic, using the VHDL code developed.
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1 Introduction

One of the key issues in the communication system design between the HAP and an high speed
train is the non-negligible relative movement of the link end-points. This means that the high gain
antenna systems of both the platform and the train must have steering capabilities, that can be provided
either by means of mechatronics devices, or by a beamforming system. Both solutions have been
simultaneously addressed within the CAPANINA project [1, 3], showing that a trade-off exists between
realization complexity and tracking performance.

Whereas for the HAP antenna system it may be preferable, in some cases, to implement a fixed,
hand-over based, spotbeam coverage of the ground area, the ground terminal antenna is required to
be able to steer its main radiation beam in real-time toward the position of the platform, thus employing
adaptive tracking beamforming.

Furthermore, the propagation channel between the HAP and the ground terminal is likely to impair
the transmitted signal with significant non-periodic Doppler effect, due to the motion of both link end-
points, and with flat or slightly frequency-selective fading, due to atmospheric scattering reflections from
very smooth surfaces of man-made structures [4].

In this situation, smart antennas systems, aimed at adaptively shaping the equivalent radiation
pattern of the antenna array and simultaneously compensating for fading and Doppler effects, are one
of the best candidates for the ground terminal transceiver. Following the conclusions of Deliverable
D17 [1], in this report analyzes the implementation aspects of an adaptive smart antenna algorithm,
especially tailored for ground terminals, that receives an OFDM transmission from the HAP. The HAP
holds the transmitter while the receiver is mounted onto the ground terminal, possibly the high-speed
train.

The main focus of the work is to investigate the suitability of the algorithm to be implemented on an
electronic device (e.g., an FPGA), that works in finite-precision arithmetics. One of the first issues to be
investigated is the stability of the algorithm, that can be seriously affected by the quantization errors.
The second issue is the implementation complexity, represented by the number of instructions to be
computed per second; it yields a constraint on the minimum clock frequency required by the device.
The third issue, clearly related, is the number of quantization bits used to represent the data handled
by the algorithm in its different parts, because it determines both the quantization error and the size of
the allocated memory.

The beamforming approach discussed hereafter is an extension of that presented in Deliverable
D17, developed for a Single-Carrier IEEE 802.16 communication link. Since the algorithm performance
is, in some way, scalable with the number of (sub)carriers, the implementation analysis discussed this
report is directly suitable to the Single-Carrier case.

Furthermore, since the computational complexity is an issue and it has to be kept as low as possible,
a time domain, or pre-FFT, beamforming is considered. This means that its scheme can be directly
adopted in a Single-Carrier system, where a frequency-domain beamforming would be economically
disadvantageous and the time-domain approach is the far most commonly one. Last but not least, the
time-domain solution is also well suited for the kind of flat fading channel between HAP and train.

In contrast to a Single-Carrier system, in OFDM there is the possibility to work in the presence of
a multitude of input signals simultaneously carried by some orthogonal sub-carriers in the frequency
domain. To exploit this fact, a multirank beamforming algorithm, based on the standard Recursive Least
Squares (Multirank RLS) approach, is proposed in [2]. However, as the well known standard RLS, also
the Multirank RLS is unstable if developed with finite precision arithmetic [5], and it requires remarkable
computational effort. Since it is known that the QR Decomposition (QRD) approach makes the RLS
algorithm stable (see [1] and references therein), the QRD recursive implementation is of the utmost
interest to obtain a stable and low-complexity algorithm. A multirank, recursive, QRD RLS (Multirank
QRD-RLS) is adopted for the architecture addressed in this report. It can be recognized to be formally
similar to the block- RLS solution proposed for a different single-signal application context in [6], which
is based on Householder reflections, instead of Givens rotations. In this report the Multirank QRD-RLS
is proved to be stable on a finite precision arithmetic device, provided that a sufficient wordlength is
used, and to require a lower computational effort than the Multirank RLS [2].

Finally an hardware device has been synthesized using the VHDL language, in order to validate the
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analysis performed on the selected Multirank QRD-RLS algorithm. The results of the VHDL synthesis
follow the ones obtained by Matlab simulations, which demonstrates that the algorithm can efficiently
work on a specific device in finite-precision arithmetics, using the developed VHDL code.

The report is organized as follows: the extension from the rank-1, i.e. the Single-Carrier, algorithm to
the multirank approach is presented in Section 2, along with a brief investigation of performance in terms
of Doppler shift rejection. Implementation issues in finite precision arithmetic are discussed in Section
3, where the sufficient wordlength to represent the quantized data is derived and the computational
effort required by the numerical implementation the algorithm is investigated. Finally, the validation of
the algorithm using VHDL language is provided in Section 4, followed by the conclusions in Section 5.
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2 A multi-rank version of the classic RLS beamforming algorithm
for ground terminals

In Deliverable D17 [1], a beamforming algorithm suitable for ground terminals has been presented,
based on an RLS approach. Given the promising performance result offered by this algorithm, it has
been chosen for a deeper analysis, aimed at investigating the suitability of this algorithm for a practical
implementation, whose main challenge is represented by finite-precision arithmetic and quantization.

For the sake of generality, the approach presented in [1] is firstly extended here to a multi-dimensional
signal, i.e. for OFDM modulation, showing that the performance of the RLS algorithm can be improved
if, instead of considering only one sample every step, P samples are used to refine the estimation
computed by the algorithm (P -dimensional signal).

If we suppose to work with P input signal vectors xp[n] with p = 1, 2, ... P and P desired signals
dp[n] with p = 1, 2, ... P , it is possible to consider that the same linear processor w[n] discussed in [1]
elaborates the P input signals in order to produce P outputs yp[n] with p = 1, 2, ... P , as close as
possible to the corresponding desired signals dp[n], p = 1, 2, ... P .

To this purpose, by extension of [1], a new cost function can be written for this novel scenario as
follows

JP (w[n]) ,
P∑

p=1

n∑

`=1

λn−`|ep[`, n]|2 (1)

where the error function is now a collection of errors between each input signal and the corresponding
desired one.

The novel Least Squares optimization problem can be stated as follows

wP [n] = arg min
w[n]

P∑
p=1

n∑

`=1

λn−`|ep[`, n]|2 = arg min
w[n]

P∑
p=1

n∑

`=1

λn−`|dp[`]−wH [n]xp[`]|2 (2)

It will be referred to as Rank-P Least Squares problem, since it uses P input vector signals and P
desired signals to update the weight vector.

2.1 The OFDM transceiver model

In an OFDM transmitter, the binary data stream is modulated and parallelized into Nd sub-streams to fill
an equal number of frequency sub-carriers. Then, Np modulated pilot sub-carriers are inserted, evenly
spaced among the others, along with Nz zero sub-carriers required to avoid aliasing. The whole group
of sub-carriers is transformed in the time domain via an NFFT-point Inverse Fast Fourier Transform
(IFFT) and then serialized, to form the so called OFDM symbol. Then, the signal is cyclically extended.
Finally, after frequency up-conversion, the signal is transmitted.

At the receiver side, whose basic structure is depicted in Figure 1, each sensor of the array receives
a signal resulting by the sum of the direct signal, multipath, interferers and noise. The latter is modeled
as an additive white Gaussian noise (AWGN), mutually independent at each antenna element. The
received signals could be subject to Doppler shift and fading.

The beamforming weight vector is designed to both steer the equivalent beampattern toward the
HAP and to recover the Doppler shift on the received signal on the basis of the received pilots and
zeros sub-carriers of the OFDM symbol. Indeed, the receiver knows the training sequences carried by
the pilot sub-carriers, so that it can exploit them, along with the zero sub-carriers as the set of reference
signals necessary to the beamformer to adapt its M -element weight vector w[n] at the n-th OFDM
symbol.

The receiver of Figure 1 is divided in two main parts: the upper part is used to estimate beamforming
weights, while the lower one is the classical OFDM receiver which performs, after beamforming, the
reversed process encountered at the transmitter. In the upper part, the desired signals dp[k] are the
known sequences for all the indexes p spanning the pilot sub-carriers and the zeros sub-carriers. The
time index k refers to the k-th OFDM symbol. Let U[k] ∈ CM,NFFT be the matrix whose columns are
the received array signal vectors taken from the k-th OFDM symbol after cyclic prefix extraction. The
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Figure 1: Basic structure of an OFDM receiver with time domain beamformer.

signal after beamforming, spatially filtered by the the weight vector w[n], can be written as c[k, n] =
UT[k]w∗[n]. Being the matrix F the FFT operator, the signal after the FFT block becomes c̃[k, n] =
Fc[k, n]. In order to select the p-th sub-carrier, let us formally multiply c[k, n] by gp that is a vector made
by all zeros except for the p-th entry which is one. So, the signal received from the p-th subcarrier is
written as

yp[k, n] = gT
p FUT[k]w∗[n] = wH[n]U[k]FTgp = wH[n]xp[k] (3)

where it is useful to identify the vector xp[k] = U[k]FTgp.
The purpose of the beamformer is to reproduce the spatial signature of the desired signal impinging

on array while minimizing the interferers and noise contributions and compensating the Doppler shift.
For the beamformer addressed here, we suppose that P received pilots and zeros sub-carriers of the
n-th OFDM symbol xp[n], p = 1, 2, . . . P with P = Np +Nz are simultaneously available for processing
along with P corresponding desired signals dp[n]. Thus, as anticipated, the same linear processor w[n]
can be used to elaborate the P input signals in order to produce P outputs yp[n], p = 1, 2, . . . P as
close as possible to the corresponding desired signals.
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2.2 Rank-P Least Squares problem solution

In order to derive a closed form solution to problem (2) let us define the following quantities, ∀ p = 1, 2,
... P :

Xp[n] , [xp[1], xp[2], ... xp[n]] ∈ CM,n (4)

yp[n] , [yp[1, n], yp[2, n], ... yp[n, n]]T = XT
p [n]w∗[n] ∈ Cn,1 (5)

dp[n] , [dp[1], dp[2], ... dp[n]]T ∈ Cn,1 (6)

ep[n] , dp[n]− yp[n] ∈ Cn,1 (7)

Λ[n] , diag{[λn−1, λn−2, ... λ, 1]} ∈ Cn,n (8)

Note that they are the same quantities already defined in [1], but they depend on the signal subscript p.
The solution to problem (2) can be found by zeroing the complex gradient of (1) taken with respect

to w∗[n]. By defining the auto-correlation matrix Rxx[n] and the cross-correlation vector rxd[n] as

Rxx[n] ,
P∑

p=1

Xp[n]Λ[n]XH
p [n] ∈ CM,M (9)

rxd[n] ,
P∑

p=1

Xp[n]Λ[n]d∗p[n] ∈ CM,1 (10)

the required solution can be written as

wP [n] = R−1
xxrxd[n]. (11)

We can notice that if P = 1, then the classical LS (Least Squares) solution shown in [1] is obtained.

2.2.1 Standard Multi-rank Recursive Least Square solution

As discussed in [1], the direct solution proposed in Equation (11) is unfeasible from a practical point
of view, since the computational effort necessary to obtain the optimum weight vectors requires a full
matrix inversion, which has O(M3) complexity, with M standing for the number of rows of the square
matrix Xp[n], which grows, as Λ[n] and dp[n], with the time index n.

To circumvent this problem, it is a common practice in the Rank-1 case to exploit the fact that the
auto-correlation matrix Rxx[n] and the cross-correlation vector rxd[n] can be written as time updates of
the same quantities evaluated at the previous time instant [1]. Analogously, for the Rank-P case, the
auto-correlation matrix and the cross-correlation vector can be written as a rank-P update of the same
quantities evaluated at the previous time instant, as

Rxx[n] = λRxx[n− 1] +
P∑

p=1

xp[n]xH
p [n] (12)

rxd[n] = λrxd[n− 1] +
P∑

p=1

xp[n]d∗p[n] (13)

Consequently, as for the Rank-1 case, a recursive implementation of the solution (11) can be conceived
by exploiting the matrix inversion lemma on Equation (12).

Having P rank updates to perform on a matrix, Equation (12) can be rewritten as follows

R1[n] , λRxx[n− 1]
R2[n] , R1[n] + x1[n]xH

1 [n]
R3[n] , R2[n] + x2[n]xH

2 [n] (14)
...

RP+1[n] , RP [n] + xP [n]xH
P [n] = Rxx[n]
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obtaining Rxx[n] which represents the Rank-P update of Rxx[n− 1].
In the same way, Equation (13) can be rewritten as follows

r1[n] , λrxd[n− 1]
r2[n] , r1[n] + x1[n]xH

1 [n]
r3[n] , r2[n] + x2[n]xH

2 [n] (15)
...

rP+1[n] , rP [n] + xP [n]d∗P [n] = rxd[n]

obtaining rxd which represents the Rank-P update of rxd[n− 1].
By invoking the Matrix Inversion Lemma1, it is possible to write

R−1
p+1[n] = (I− kp[n]xH

p [n])R−1
p [n] p = P−1, . . . 1 (16)

where

kp[n] ,
R−1

p [n]xp[n]

1 + xH
p [n]R−1

p [n]xp[n]
= R−1

p+1[n]xp[n] (17)

is known as the Kalman gain vector.
Thus, it is possible to exploit P times the matrix inversion lemma (one for each rank-1 update) on

the same matrix by iterating Equation (16), and write

R−1
P+1[n] =

1∏

p=P

(I− kp[n]xH
p [n])R−1

1 [n] (18)

R−1
P+1[n] =

1
λ

1∏

p=P

(I− kp[n]xH
p [n])R−1

P+1[n− 1] (19)

If we define for convenience

Ur[n] ,
r∏

p=P

(I− kp[n]xH
p [n]) r = 1, 2, . . . P (20)

with UP+1[n] = I, and
Rr[n] , Rr−1 + xr−1[n]xH

r−1[n] (21)

as in Equation (14), it is possible to rewrite Equation (18) as

R−1
P+1[n] = Ur[n]R−1

r [n] r = 1, 2, . . . P (22)

By inserting Equations (22) and (13) in Equation (11) we obtain

w[n] = R−1
xx [n]rxd[n] = R−1

P+1[n]rxd[n]

= λUr[n]R−1
r [n]rxd[n− 1] + Ur[n]R−1

r [n]
P∑

p=1

xp[n]d∗p[n] (23)

By using r = 1 for the first addend and r = p + 1 for the second one, Equation (23) can be rewritten as

w[n] = λU1[n]R−1
1 [n]rxd[n− 1] +

P∑
p=1

Up+1[n]R−1
p+1[n]xp[n]d∗p[n] (24)

1The Matrix Inversion Lemma [7] states that

(A + XBXT )−1 = A−1 −A−1X(B−1 + XT A−1X)−1XT A−1

where A and B are square and invertible matrices but need not be of the same dimension. Notice that the superscript (.)T can
be substituted with the superscript (.)H when complex values are used.
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Now, by recalling that R1[n] = λRP+1[n− 1] it can be seen that

λU1[n]R−1
1 [n]rxd[n− 1] = U1[n]R−1

P+1[n− 1]rxd[n− 1] = U1[n]w[n− 1] (25)

Furthermore, thanks to Equation (17) we can write

Up+1[n]R−1
p+1[n]xp[n]d∗p[n] = Up+1[n]kp[n]d∗p[n] (26)

At this point, by substituting equations Equation (25) and Equation (26) in Equation (24), one gets

w[n] = U1[n]w[n− 1] +
P∑

p=1

Up+1[n]kp[n]d∗p[n] (27)

Let us now rewrite the product

U1[n]w[n− 1] = U2[n](I− k1[n]xH
1 [n])w[n− 1] =

= U2[n]w[n− 1]−U2[n]k1[n]ỹ∗1 [n] (28)

where
ỹp[n] = wH [n− 1]xp[n]. (29)

Proceeding by induction Equation (28) can be rewritten as

U1[n]w[n− 1] = UP+1[n]w[n− 1]−
P∑

p=1

Up+1[n]kp[n]ỹ∗p[n] (30)

Let us now define
ẽ∗p[n] = d̃∗p[n]− ỹ∗p[n] (31)

If we substitute Equation (30) in Equation (27), the final equation obtained is

w[n] = w[n− 1] +
P∑

p=1

Up+1[n]kp[n]ẽ∗p[n] (32)

The operations required to implement the standard Rank-P RLS algorithm are summarized in Algo-
rithm (1).

2.2.2 A low-complexity solution

In [2] it is demonstrated that the standard Multi-rank RLS algorithm (1) can be implemented with lower
computational effort, while preserving the same analytic solution.

This is possible because in every OFDM frame, R−1
xx , rxd, and w are partially updated using the

pilot signals.
The vector w updated at each pilot signal in 1 OFDM frame can be used to update R−1

xx , rxd and
k for the next pilot signal of the same OFDM frame. This leads to have identical results but a lower
computational effort compared to the one obtained in our solution where the w update is performed
only at the last iteration on the pilot signals during the OFDM symbol.

2.2.3 QR decomposition-based Multi-rank Recursive Least Square solution

QR Decomposition (QRD) is known to be a useful approach to make Rank-1 RLS a numerically robust
algorithm [1]. In order to develop the QR decomposition-based Recursive Least Squares solution to
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Algorithm 1 Rank-P RLS Algorithm
1: Initialize: n ← 0

2: Initialize: δ, which must be a small positive constant

3: Initialize: R1[0] = δ−1IM,M

4: Initialize: w[0] = 0M,1

5: repeat

6: n ← n + 1

7: receivexp[n], p = 1, 2, ... P

8: receivedp[n], p = 1, 2, ... P

9: for p = 1 : M do

10: if (p == 1) then

11: R−1
p [n] = 1

λ
R−1

p+1[n− 1]

12: else

13: R−1
p [n] = R−1

p−1[n]
[
I− kp−1[n]xH

p [n]
]

14: end if

15: up[n] = R−1
p [n]xp[n]

16: kp[n] =
up[n]

I+xH
p [n]up[n]

which, after processing thefor iteration, leads to Equation (17)

17: yp[n] = wH [n− 1]xp[n]

18: ẽ∗p[n] = d∗p[n]− y∗p [n]

19: end for

20: computew[n] by solving the Equation (32)

21: apply beamforming usingw[n]

22: until there are no further samples

the more general Rank-P case (Multi-rank QRD-RLS algorithm), it is necessary to define the following
quantities:

X̃[k] , [x1[k], x2[k], ... xP [k]] ∈ CM,P (33)

X[k] ,
[
X̃[1], X̃[2], ... X̃[n]

]
∈ CM,nP (34)

ỹ[k] , [y1[k], y2[k], ... yP [k]] = X̃T [k]w∗[n] ∈ CP,1 (35)

y[n] ,
[
ỹ[1], ỹ[2], ... ỹ[n]

]
= XT [k]w∗[n] ∈ CnP,1 (36)

d̃[k] , [d1[k], d2[k], ... dP [k]]T ∈ CP,1 (37)

d[n] ,
[
d̃T [1], d̃T [2], ... d̃T [n]

]T

∈ CnP,1 (38)

ẽ[k, n] , [e1[k, n], e2[k, n], ... eP [k, n]]T = d̃[k]− ỹ[k] ∈ CP,1 (39)

e[n] ,
[
ẽ[1, n], ẽ[2, n], ... ẽ[n, n]

]
= d[n]− y[n] ∈ CnP,1 (40)

Γ[n] , Λ[n]⊗ IP ∈ CnP,nP (41)

where the symbol ⊗ stands for the Kronecker product and IP is a P ×P identity matrix. Adopting these
definitions, the cost function in Equation (1) can be compactly written as

JP (w[n]) = eT [n]Γ[n]e∗[n] =
∥∥∥Γ 1

2 [n]e∗[n]
∥∥∥

2

=

=
∥∥∥Γ 1

2 [n]d∗[n]− Γ
1
2 [n]XH [n]w[n]

∥∥∥
2

(42)
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where ‖.‖ is the Euclidean norm of a vector. If we define the data matrix as

A[n] , Γ
1
2 [n]XH [n] ∈ CnP,M (43)

its QR decomposition is given by

A[n] , Q̄[n]R̄[n] = [Q1[n] Q2[n]]
[

R̂[n]
0nP−M,M

]
(44)

where Q̄[n] ∈ CnP,nP is an orthogonal matrix, R̄[n] ∈ CnP,M is an upper triangular matrix, Q1[n] ∈
CnP,M and Q2[n] ∈ CnP,nP−M represent a partition of the matrix Q̄[n] and, finally, R̂[n] ∈ CM,M is the
square upper triangular part of R̄[n] while 0nP−M,M ∈ CnP−M,M is the part made by all zero entries.
By substituting Equation (44) into Equation (42), the cost function becomes

JP (w[n]) =
∥∥∥Γ 1

2 [n]d∗[n]− Q̄[n]R̄[n]w[n]
∥∥∥

2

(45)

Furthermore, we know that the norm is invariant under multiplication of its argument by orthogonal
matrices, and so let us multiply Equation (45) by Q̄H [n] as follows

JP (w[n]) =
∥∥∥Q̄H [n]Γ

1
2 [n]d∗[n]− R̄[n]w[n]

∥∥∥
2

=

=

∥∥∥∥∥
[

QH
1 [n]Γ

1
2 [n]d∗[n]− R̂[n]w[n]

QH
2 [n]Γ

1
2 [n]d∗[n]

] ∥∥∥∥∥

2

(46)

in order to find the optimum weight vector w[n] which is the solution of the following system

R̂[n]w[n] = p[n] (47)

being
p[n] , QH

1 [n]Γ
1
2 [n]d∗[n] ∈ CM,1 (48)

The improvement from Equation (11) is related with the fact that Equation (47) represents an upper
triangular system that can be easily solved by backward substitution with a reduced computational
effort.

The problem now is finding an efficient way to compute R̂[n] and p[n] in terms of updates of the
same quantities evaluated at the previous time instant.

To this purpose, let us re-write A[n] in terms of A[n− 1], in order to explicitly build the update of the
QR decomposition.

A[n] , Γ
1
2 [n]XH [n] =

=
[

λ
1
2 Γ

1
2 [n− 1] 0(n−1)P,P

0P,(n−1)P IP

] [
XH [n− 1]

X̃H [n]

]
=

=
[

λ
1
2 Γ

1
2 [n− 1]XH [n− 1]

X̃H [n]

]
=

=
[

λ
1
2 A[n− 1]
X̃H [n]

]
(49)

Now by recalling the QR decomposition of A[n] it is possible to write

A[n] = Q̄[n]R̄[n] =

=
[

λ
1
2 A[n− 1]
X̃H [n]

]
=

=
[

λ
1
2 Q[n− 1]R[n− 1]

X̃H [n]

]
=

=
[

Q[n− 1] 0(n−1)P,P

0(P,n−1)P IP

] [
λ

1
2 R[n− 1]
X̃H [n]

]
. (50)
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If there exists an orthogonal matrix T[n] able to transform the matrix

R̃[n] ,
[

λ
1
2 R[n− 1]
X̃H [n]

]
∈ CnP,M (51)

into an upper triangular matrix, then the QR update is readily obtained as follows

Q̄[n] ,
[

Q[n− 1] 0(n−1)P,P

0(n−1)P,P IP

]
(52)

R̄[n] , T[n]
[

λ
1
2 R[n− 1]
X̃H [n]

]
(53)

There are different methods to find the orthogonal matrix T[n], based upon Givens rotations [8],
Householder reflections [6, 8], or based upon scaled tangent rotations (STAR) [9]. The first methods
are popular for their reduced computational complexity and the possibility to be efficiently implemented
on systolic array structures.

A Givens rotation matrix is an orthogonal matrix able to zero out a specific element of the vector it
multiplies. Thanks to a sequence of Givens rotations matrices, it could be possible to annihilate all the
elements of the matrix X̃H [n] contained in R̃[n] in order to make the latter an upper triangular matrix.
Let us define the Givens rotation matrix applied to a generic matrix U

Tp,q,i(U) ,




IP−1

cp,q sp,q

Iq−p−1

−s∗p,q cp,q

InP−q




(54)

observing that the entries of this matrix are all zeros except for the elements explicitly written. Let us
define the c and s

cp,q =
|upi|√|upi|2 + |uqi|2

(55)

sp,q =
u∗qi

u∗pi

c (56)

where upi and uqi are the p-th and q-th elements, respectively, of the i-th column of U. The purpose of
such a Givens matrix is to rotate the columns of U onto a plane defined by the p-th and q-th components
of the i-th column of U in such a way that the q-th component uqi is nulled out. In this sense, the matrix

T1[n] , T1,nP−P+1,1[n] . . . T1,nP−1,1[n]T1,nP,1[n] (57)

is designed to operate onto the matrix R̃[n] in such a way that its first column is nulled out, except for
the first element. Analogously, the matrix

T2[n] , T2,nP−P+1,2[n] . . . T2,nP−1,2[n]T2,nP,2[n] (58)

nulls out the second column, except for the first two elements. This process can be iterated obtaining
the final orthogonal matrix

T[n] , TM [n] . . . T2[n]T1[n] (59)

By defining v[n] , QH
2 [n]Γ

1
2 [n]d∗[n], it is possible to write p[n] and v[n] as a function of p[n−1] and
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v[n− 1] as follows:
[

p[n]
v[n]

]
= QH [n]Γ

1
2 [n]d∗[n] =

= T[n]
[

QH [n− 1] 0(n−1)P,P

0P,(n−1)P IP

]
·

·
[

λ
1
2 Γ

1
2 [n− 1] 0(n−1)P,P

0P,(n−1)P IP

] [
d∗[n− 1]

d∗[n]

]
=

= T[n]
[

λ
1
2 QH [n− 1]Γ

1
2 [n− 1]d∗[n− 1]

d∗[n]

]
=

= T[n]




λ
1
2 p[n− 1]

λ
1
2 v[n− 1]
d∗[n]


 (60)

which represents the time update recursion for p[n] and v[n].
It is important to notice from Equation (52), Equation (53) and Equation (60) that the elements of

the matrix Q̄[n] are never required to compute w[n], since they do not appear into the time update
equations of R̄[n] (53) or p[n] (60). Furthermore, the particular structure of matrix R̄[n] and matrix T[n]
are such that time update can be computed directly for R̂[n] by operating onto the following matrix

R̆[n] ,
[

λ
1
2 R1[n− 1]
X̃H [n]

]
∈ CM+P,M (61)

with a reduced version of T[n] referred to as T̆[n].
Similar considerations can be applied to p[n] where the time update can be computed by operating

onto

p̆[n] ,
[

λ
1
2 p[n− 1]
d̃∗[n]

]
∈ CM+P,1 (62)

which means that the elements of v[n] are never required. This brings also to the fact that, even though
the matrices and the vectors grow in dimension as they are time updated, parts of them can be totally
neglected. Since this happens both in Equation (61), where some zeros rows are neglected and in
Equation (62), where v[n] is neglected too, it follows that only R̆[n] and p̆[n] are taken into account and
they are always of the same dimensions.

The operations required to implement the Rank-P QRD-RLS Algorithm are summarized in Algo-
rithm (2).

2.3 Simulation results obtained with the Multi-rank RLS algorithm

In infinite precision arithmetic the performance of the standard Multi-rank RLS algorithm (1) and of the
Multi-rank QRD-RLS algorithm (2) are the same, since they attain the same analytic solution. Therefore
the behavior of the Multi-rank QRD-RLS algorithm is analyzed in this paragraph, simulated in infinite
precision arithmetic. Different values of Doppler shift frequency fd are taken into account in order to
evaluate the capability of the algorithm to recover Doppler shifts (see also Deliverable D17, [1]).

We consider a set of simulation parameters taken from IEEE 802.16a standard: Nd = 200 data sub-
carriers, Np = 8 pilot sub-carriers and Nz = 56 zeros sub-carriers, for a total of NFFT = 256 samples per
OFDM symbol, without cyclic prefix. The signal bandwidth is 25 MHz, transmitted on a carrier frequency
of 28 GHz. Furthermore, the propagation characteristics are such that they can be properly modeled
as an AWGN channel with Doppler shift effect (we impose SNR = 0 dB in the simulations below) [10].
At the receiver, a standard Uniform Linear Array (ULA) array composed by M = 8 antennas is adopted.

As a first performance metric, we evaluate the relative residual error between the normalized beam-
former weight vector w[n0]

w1[n0]
(where w1[n0] is the first element of the vector) and its theoretical optimum

value, that, in the case of one impinging signal in AWGN, is the steering vector a[θ0, φ0] in the DOA

30/06/2006 FP6-IST-2003-506745-CAPANINA Page 18 of 38



Deliverable D28 CAP-D28-WP33-UOY-PUB-01

λ Rank Doppler No. of Symb. εw[n0] εw[n0]
[kHz] for steady state [%] [dB]

0.99 1 ±0 400 6.5 −11.82
0.99 1 ±1 400 214.2 3.31
0.99 4 ±0 46 1.4 −18.27
0.99 4 ±1 400 120.8 0.82
0.99 16 ±0 14 0.5 −22.86
0.99 16 ±1 200 12.4 −9.07
0.99 16 ±3 300 117.8 0.71
0.8 1 ±1 400 161.4 2.08
0.8 4 ±1 25 50.4 −2.97
0.8 16 ±1 15 10.6 −9.76
0.8 16 ±8 35 38.8 −4.11
0.8 16 ±9 36 57.4 −2.41

Table 1: Performance comparison for different ranks and forgetting factors of the Multi-rank QRD-RLS
algorithms, in different Doppler shift conditions.

(θ0, φ0) of the HAP signal. The residual error is defined as

εw[n0] =

∣∣∣
∣∣∣ w[n0]
w1[n0]

− a[θ0, φ0]
∣∣∣
∣∣∣
2

||a[θ0, φ0]||2 (63)

and it is shown in Table 1, averaged over 100 Monte Carlo simulation runs with n0 = 1000 iterations,
and expressed both in logarithmic scale and percentage, for different Doppler rates, algorithm ranks and
forgetting factors. Rank variation is obtained by simply using a different number of known sequences
as reference signals.

The second performance metric is given by number of OFDM symbols needed to reach the steady
state condition for the standard RLS algorithm. Fig. 2 shows how the residual error behaves in time
using different rank updates.

It is evident that as the rank increases,

• the beamformer approaches more closely the optimum solution,

• the transient behavior is shortened,

• the residual error in steady state becomes lower and lower.

Furthermore, it is possible to observe from Table 1 that the Doppler shift becomes critical above
a certain threshold (e.g., ±9 kHz) and makes the beamformer unable to mimic the steering vector,
whereas, below that threshold, a proper choice of the algorithm parameters allows compensation of
Doppler shift.
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Figure 2: Residual error for different ranks, fd = 0.2 kHz and forgetting factor λ = 0.9.
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Algorithm 2 Rank-P QRD-RLS Algorithm
Initialize: n ← 0

Initialize: R1[0] = 0M,M

Initialize: p[0] = 0M,1

repeat

n ← n + 1

receivexp[n], p = 1, 2, ... P

receivedp[n], p = 1, 2, ... P

build R̆[n] according to Equation (61)

build p̆[n] according to Equation (62)

for p = 1 : M do

for q = M + P : −1 : M + 1 do

compute cp,q and sp,q according to Equation (55) and Equation (56) on the basis of
[
R̆[n]

]
p,p

and
[
R̆[n]

]
q,p

u ←
[
R̆[n]

]
p,:[

R̆[n]
]

p,:
← cp,qu + sp,q

[
R̆[n]

]
q,:[

R̆[n]
]

q,1:p
← 01,p

[
R̆[n]

]
q,p+1:end

← −s∗p,q[u]1,p+1:end + cp,q

[
R̆[n]

]
q,p+1:end

u ← [p̆[n]]p,1

[p̆[n]]p,1 ← cp,qu + sp,q[p̆[n]]q,1

[p̆[n]]q,1 ← −s∗p,qu + cp,q[p̆[n]]q,1

end for

end for

R̂[n] ←
[
R̆[n]

]
1:M,1:M

p[n] ← [p̆[n]]1:M,1

computew[n] by solving the system (47) via backward substitution

apply beamforming usingw[n]

until there are no further samples
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3 Analysis of multi-rank RLS algorithms in finite precision arith-
metic

While there is no difference in the algebraic solution of the standard Multi-rank RLS algorithm shown
in Algorithm (1), the Multi-rank RLS presented in [2], and the Multirank QRD-RLS algorithm shown
in Algorithm (2), as well as in their ideal performance discussed in subsection 2.3, the situation is
dramatically different, whenever a real-time implementation with finite precision arithmetic is addressed.

In this section we investigate the suitability of the algorithms discussed in Section 2 to the imple-
mentation on a finite precision device. Our investigation will address the following main points:

1. Computational complexity of the algorithms

2. Choice of the machine wordlength

3. Algorithms performance in finite precision arithmetic

The simulation of finite precision arithmetic has been made by using a floating point 32-bit version
of the algorithms, written in Matlabr language.

As for the Multi-rank RLS algorithm, we mainly refer hereafter to the low-complexity implementation
proposed in [2] (see Section 2.2.2). However, we can anticipate that the implementation in [2] will result
in instability in some conditions, while the QRD approach is always stable.

3.1 Analysis of computational complexity

In Tables 2–4 the computational complexity of each algorithm discussed in Section 2 is summarized,
for rank P , M beamformer weights (i.e., M antenna sensors) and Nbit bits assigned as numerical
representation wordlength.

Standard Multi-rank RLS Algorithm (1)

Step no. Operation No. of real products No. of real sums No. of real divisions

1 k[n] 8M2 + 6M 8M2 − 1 2MNbit

2 Rxx[n] 10M2 8M2 − 2M

3 e[n] 4M 4M

4 (1+2+3)*P
5 w[n] 32M2 + 24M 32M2

Tot. (18P + 32)M2 + (10P + 24)M (16P + 32)M2 + 2MP − P 2PMNbit

Table 2: Computational effort for the standard Multi-rank RLS algorithm (1).

Multi-rank RLS Algorithm in [2]

Step no. Operation No. of real products No. of real sums No. of real divisions

1 k[n] 8M2 + 6M 8M2 − 1 2MNbit

2 e[n] 4M 4M

3 Rxx[n] 10M2 8M2 − 2M

4 w[n] 4M 4M

5 (1+2+3+4)*P

Tot. P (18M2 + 14M) P (16M2 + 6M − 1) 2PMNbit

Table 3: Computational effort for the Multi-rank RLS algorithm proposed in [2].

In order to give an idea of the number of operations performed in a second, we can choose:

• M = 8, number of sensors

• rank P = 4
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Multi-rank QRD-RLS Algorithm (2)

Step no. Operation No. of real products No. of real sums No. of real divisions No. of SQRT

1 R[n]
√

λ M2 + M

2 p[n]
√

λ 2M

3 Givens rot. PM(30 + 6M) PM(18 + 4M) PM PMNbit

4 w[n] M2/2 + 11M/2 M2/2 + 5M/2 2M
via backward subst.

Tot. ( 3
2

+ 6P )M2+ ( 1
2

+ 4P )M2+ (P + 2)M PMNbit

( 17
2

+ 30P )M ( 5
2

+ 18P )M

Table 4: Computational effort for Multi-rank QRD-RLS algorithm (2).

• wordlength Nbit = 16

• OFDM symbol duration equal to 8 µs

Concerning the mathematical operations performed by the device, let us suppose that:

• The device performs a real sum and a real product for each cycle

• The device performs a real division in a number of cycles equal to the wordlength

In these conditions, the device that implements the algorithm (1) should perform 7168 operations for
each OFDM symbol, which requires a clock frequency of f = 1.79 GHz. In the algorithm [2], the device
should perform 5056 operations for each OFDM symbol, which requires a clock frequency of f = 1.26
GHz. Finally, the device that implements the Multirank QRD-RLS algorithm is requested to compute
just 2660 operations for each OFDM symbol, which requires a clock frequency of f = 665 MHz, which
is almost half the one obtained with the algorithm in [2].

On the other hand, if a rank-1 implementation is selected for a Single-Carrier communication [1], i.e.
P = 1, the number of operations and clock frequency requested by the three algorithms are summarized
in the table below:

Standard rank-1 RLS (1) Rank-1 RLS in [2] Rank-1 QRD-RLS (2)

No. of operations 3472 1264 788
per OFDM symbol
Clock frequency 434 158 98.5
[MHz]

3.2 Wordlength analysis

When we approach the implementation of an algorithm on a finite precision arithmetic device, we have
to deal with the problem of determining the number of bits to represent each data value in the algorithm
(Nbit).

After having determined the minimum number of bits to accurately represent the data, the device
must be arranged in order to avoid overflow and truncation effects. Evidently, the device must have at
disposal the necessary number of bits per dataword.

The choice of the correct wordlength can be determined either analytically, by studying the data input
range and the critical paths, or by an empirical way, simulating a quantized version of the algorithm, in
order to directly find the correct number of bits which occur to describe the integer and the fractional
part of each value. Both these strategies have been used to find the best value Nbit.

If we are dealing with data with modulus strictly lower than 1, we can decide to process the signals
taking into account only their fractional part. It must be multiplied by 2(Nbit−1) and then represented on
a congruous number of bits (Nbit − 1), actually getting rid of the integer part.

If, on the other hand, we are dealing with signals which are not limited in the range (−1, +1), it
is important to evaluate the maximum dynamics to be described in finite precision arithmetic, either
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to rescale all the values so as to obtain data with modulus lower than 1, as before, or to provide a
description with a congruous number of bits also for the integer part of the data.

These preliminary considerations do not take into account possible overflow problems, discussed in
the following.

3.2.1 Analytical study

First, it is important to choose a method to represent the data: it could be a modulus and sign represen-
tation or 2’s complement description, for the fixed point methods, or a floating point family method. We
choose a 2’s complement description, which is the most usual way to deal with such problems. Integer
and fractional parts of the data will be quantized separately. This description is compatible with the use
of the signed library in the VHDL language. In this description, having Nbit = b+1 bits at one’s disposal,
1 bit can be used for the sign and the other b bits for the data quantization.

Furthermore, the statistical investigation of the values assumed by the data allows convenient mod-
eling of description range, to prevent the overflow problem.

Then, the critical path must be identified and computed. The critical path is the sequence of opera-
tions that must be completed on schedule for the entire calculation to be completed on schedule. It is
the longest duration path through the workplan.

Recalling that each multiplication causes a truncation or a rounding off of the LSBs (Less Significant
Bits), it is necessary to know the number of multiplications in order to implement a well-conditioned
algorithm. Besides, since each sum potentially causes an overflow, it is necessary to know the number
of sums in order to best scale the input data and to prevent overflow.

For the algorithms under investigation, the weight vector is the output data value which passes
through the highest number of operations at each iteration. For the Multi-rank RLS proposed in [2], it is
possible to compute the number of bits necessary to account for the operation of the critical path from
Table 3, as

bop = dlog2(P (16M2 + 6M − 1))e = d12.013e = 13bits (64)

Besides, the smallest input data is given by the adaptation error which can reach values near to 10−11.
This means that, to correctly represent these values, bdata = dlog2

(
1

10−11

)e = d36.54e = 37 bits are
needed. Therefore, the system that implements the Multi-rank RLS [2] should represent the data with
Nbit = bop + bdata = 13 + 37 = 50 bits, which is a quite demanding requirement.

For implementation of the Multi-rank QRD-RLS algorithm, we note the following:

1. The QRD-RLS algorithm does not deal with the adaptation error, since it exploits other quantities
to evaluate the weight vector.

2. It has been demonstrated in [11] that the quantization error which propagates in the algorithm is
exponentially stable and has terms which decay proportionally to the time index.

3. The calculation which is most sensitive to quantization is the evaluation of the parameters c and
s in the Givens rotations. Since these operations need a greater number of bits to represent
the integer part of the data, during the simulation and then in the VHDL implementation, the
integer part of the data elaborated inside the Givens rotation block are described using double
wordlength.

An analytical way to compute the wordlength for the finite precision implementation of an algorithm
such as the Multi-rank QRD-RLS one has been proposed in [11]. The data most likely to be subject to
overflow problems are those of the elements contained in matrix Rxx[n] and in vector rxd[n]. Let xMAX

be the maximum magnitude of the signal xp[n] and dMAX the maximum magnitude of the desired signal
dp[n]; it has been demonstrated in [11] that

∣∣Rxx[n]
∣∣ <

|xMAX |√
1− λ

(65)

and ∣∣rxd[n]
∣∣ <

|dMAX |√
1− λ

, (66)
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Figure 3: Residual error of the classic Multirank RLS, with infinite precision implementation (asterisks)
and quantized implementation over 50 bits (circles)

where |A| is defined as the norm-1 of matrix A. These upper bounds allow evaluation of the wordlength
necessary to keep the quantization error below an acceptable threshold. To evaluate dMAX and xMAX ,
dp[n] is modeled as a random variable with zero mean and variance σd = 1, so that it is reasonable
to assume |dMAX | = 3σd = 3 and |rxd[n]| < 30, with λ = 0.99. As a consequence, for the simulated
system, σx =

√
2, |xMAX | = 3

√
2 and |Rxx[n]| < 42.5.

Therefore, we choose to describe the integer part of the data with 7 bits (1 for the sign and 6 for
the absolute value), so that we correctly describe numbers in the range [−(26 − 1), (26 − 1)], whereas
it is known that this algorithm does not suffer from unbounded output problems. However, owing to the
critical step represented by the computation of the square roots, data involved in these operations are
represented with double wordlength values.

In order to set the wordlength for the fractional part of the data so as to guarantee the stability of the
algorithm, it is possible to proceed via an empirical evaluation as proposed in [12]. It has been proved
in [12] that the two methods (analytical and empirical) bring the same result.

3.2.2 Empirical validation: performance in finite precision arithmetic

It is possible to show that the finite precision implementation of the Multirank RLS algorithm in [2] with
such a number of bits has approximately the same performance in its infinite precision implementation.
This is shown in fig. (3), with the normalized residual error εw[n] plotted on a logarithmic scale. The
propagation conditions set for the simulations discussed in this subsection are fd = 0 and SNR = 0 dB.

Nonetheless, the difference between the residual errors for the infinite and finite precision imple-
mentation is −65.8 dB at the 100-th symbol, increasing to −57.2 dB at the 10000-th symbol. This means
that, despite the long wordlength, the RLS implementation [2] exhibits instability.

In the following, the wordlengths of the integer part and fractional part will be separately studied:

• βI bits are dedicated to the integer part,

• βF bits are dedicated to the fractional part.

On the basis of the last result discussed in the previous subsection, a finite precision implementation
of the Multi-rank RLS algorithm [2] has been evaluated, representing the data over Nbit bits, composed
of:

• 1 bit for the sign,
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Rank Mean difference Max difference
1 −55.39 −46.71
3 −55.36 −46.01
5 −54.456 −43.80

Table 5: Multi-rank RLS algorithm [2]: difference between the residual errors for infinite and finite preci-
sion implementation.

βI classic RLS QRD-RLS
No. of bits Mean difference Max. difference Mean difference Max. difference

1 + 1 −18.425 −17.081 −6.2233 1.0304
2 + 1 −35.491 −31.392 −9.9268 −5.1551
3 + 1 −46.322 −40.208 −14.044 −11.228
5 + 1 −49.732 −44.214 −80.366 −77.179
6 + 1 −47.495 −44.211 −83.681 −79.498
7 + 1 −51.608 −42.601 −87.528 −82.78

Table 6: Differences between residual errors in infinite and finite implementation as a function of βI ,
with βF = 15.

• βI = 6 bits,

• βF = 15 bits.

In these conditions the difference between the residual errors for the infinite and finite precision imple-
mentation, averaged over 10 Monte Carlo simulations, has been reported in Table 5, as a function of
the rank. These results, though quite good, show a worsening behavior when the rank increases. With
Nbit = 22 bits, the algorithm suffers from quantization error and tends to become unstable.

In order to observe the differences between the performances of the two algorithms Multi-rank RLS
[2] and Multi-rank QRD-RLS, in Figure 4 we represent the normalized residual error in dB obtained for
the two algorithms as a function of time. The algorithms work with λ = 0.8, SNR = 0 dB, rank P = 16
and 150 simulated symbols, using βF = 15 bits for the fractional part and βI variable for the integer part.
The Multirank RLS algorithm [2] is indicated as STD-RLS, while the Multirank QRD-RLS algorithm is
indicated as QRD-RLS.

Table 6 summarizes the differences between infinite and finite implementation obtained with the two
algorithms using βI = 1 to 7 bits for the integer part.

From Table 6 and Figure 4 it can be noticed that, for a low number of bits representing the integer
part of the data, the Multirank QRD-RLS algorithm, although suffering the saturation, is stable, since
the most critical values, i.e., the output of the square roots in the Givens rotations, are treated with a
double number of bits for the integer part. The Multi-rank RLS algorithm [2], instead, suffers less the
saturation problems for the first samples, but, as time goes on, the involved matrices tend to rapidly
expand in numerical value and the algorithm becomes unstable.

With βI = 6 bits representing the integer part, the Multirank QRD-RLS algorithm performs well and
does not suffers saturation problems.

For the the partial wordlength for the fractional part, βF , in Table 7 we show the differences between
infinite and quantized implementation of the algorithms, obtained with βI = 6 bits and variable βF . It
can be observed that the quantized implementation of the Multirank RLS algorithm [2] is stable with
such a low number of symbols, but, as long as the number of simulated symbols increase, it becomes
unstable.2

Finally, Figure 5 shows the normalized residual errors of the two algorithms, obtained for different
wordlengths; it is observed that the quantized version of the QRD-RLS algorithm differs less from its
infinite implementation than the Multi-rank RLS algorithm [2].

2A common solution to such a problem is to periodically reset the memory matrices.
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Figure 4: Normalized residual error for different implementations of the Multi-rank RLS algorithm, for
different number of quantization bits for the integer part of the data, βI .

βF Multi-rank RLS [2] Multi-rank QRD-RLS
No. of bits Mean difference Max. difference Mean difference Max. difference

7 −15.645 −8.9706 −23.402 −16.785
8 −18.461 −10.245 −30.779 −22.062
10 −24.753 −17.485 −43.416 −34.988
11 −28.586 −21.433 −48.789 −41.779
12 −32.175 −21.219 −55.305 −44.173
13 −37.042 −30.812 −61.936 −55.377
15 −46.833 −38.553 −72.478 −65.041
18 −64.959 −56.349 −91.456 −81.621

Table 7: Differences between residual errors in infinite and quantized implementation of the algorithms,
as a function of βF , with βI = 6 bits.
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Figure 5: Normalized residual errors of the two algorithms, obtained for different wordlengths Nbit =
1 + βI + βF .
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Performances of Multirank QRD-RLS in High Noise Conditions
Rank No. of Clock Residual error floor No. of symb. for

operations frequency [MHz] 1500-th symbol [dB] rank 1 steady-state
1 788 98.5 −27.29 270
2 1412 176.5 −33.16 105
3 2036 254.5 −36.62 70
4 2660 332.5 −38.95 50
5 3284 410.5 −41.21 41
6 3908 488.5 −42.61 34
7 4532 566.5 −43.88 30
8 5156 644.5 −45.09 26
9 5780 722.5 −46.26 24
10 6404 800.5 −47.05 22
11 7028 878.5 −48.04 21
12 7652 956.5 −48.79 19
13 8276 1034.5 −49.61 17
14 8900 1114.5 −50.03 16
15 9524 1195.5 −50.93 15
16 10148 1468.5 −51.38 14

Table 8: Costs/benefits of QRD-RLS Multirank Algorithm

To conclude this section, we propose in Table 8 a performance comparison for different ranks of the
Multirank QRD-RLS algorithm, in terms of

• number of operations needed,

• clock frequency,

• normalized residual error in steady-state,

• number of transient symbols to reach the steady-state error level attained by the rank 1 version of
the algorithm.

The choice of the device parameters (i.e., number of quantization bits, clock frequency) derives from
the trade-off between system performance (i.e., residual error and number of transient symbols) and
implementation costs (i.e., number of operations and clock frequency).

A possible solution, that gives a good trade-off between costs and benefits and that we consider in
our next development, is a device that implements a rank-4 QRD-RLS algorithm, quantized on 7 bits for
the integer part (βI = 6 + 1 is for the sign) and βF = 13 bits for the fractional one. This solution can be
implemented on a device working on Nbit = 20 bits wordlength at least, with a clock frequency of 665
MHz.

3.2.3 Wordlength in the computation of the Givens rotations

For the computation of the Givens rotations, a specific block is dedicated to compute parameters cp,q

and sp,q. Inside this block a longer wordlength is necessary, because of the presence of square mod-
ules in the denominator of Equation (55); this leads the represented values to have a double dynamic
compared to that used for other computations. Thus, the number of bits is increased to β′I = 12 bits for
the integer part, while the fractional part may not to be changed.

Note that this increased wordlength is used just within the hardware block described in §4.2.5, which
computes Givens rotations, where we need N ′

bit = 26 bits totally. Indeed, after the computation of the
square modules, there is a square root operation that bring the values back to the previous dynamic.
Consequently, outside the Gives rotation’s block, the wordlength can become again Nbit = 20 bits.
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4 VHDL implementation

This chapter describes a general implementation of the Multi-rank QRD-RLS algorithm in VHDL lan-
guage. The main aims are

• a description of the data in finite precision arithmetic, which leads to quantization errors,

• a description of the blocks that must be implemented for computing the algorithm, together with
those necessary for computing complex values.

The last subsection will shows that the results obtained in VHDL are coherent with those simulated with
Matlabr.

4.1 Data description in VHDL components

Recall that the input data are quantized on Nbit bits and represented in 2’s complement, so the MSB
(Most Significant Bit) is used for the sign. Then the value is represented with Nbit − 1 bits, where this
number can be divided into βF bits for the fractional part and βI bits for the integer part. The βF and βI

parameters have been derived from Matlabr simulations, shown in Section 3.
It is important to notice that the data must be integer values, converted into bit vectors. Each real

input must be shifted to become an integer, so each value is multiplied by 2βF . The real and imaginary
part of each complex value are treated separately, as two independent real numbers.

Figure 6 shows the quantization procedure applied to a complex, fractional number X = a + jb,
where some precision is lost., + j =a b

αβ

αβ

αβ

N b i ts g n s g ns g n ,,2 α,
αβ

s g n. . . . . . . . .. . .
Figure 6: Shifting by α = βF bits and truncation. β = βI .

4.2 Developed blocks for the Multi-rank QRD-RLS algorithm

The overall architecture has been designed to maximize the throughput of the device , despite the
cost of a larger starting delay time. For this reason, everything is pipelined, resulting in a flat architecture
with a great number of registers, useful to reduce the critical paths, correctly synchronize the data and
reset the components if necessary.

4.2.1 Multirank QR.vhd

This is the main block of the algorithm, it connects the blocks that compute the QR update seen in
Equation (52) and (53) and the blocks that compute the backward substitution for solving the system in
Equation (47), giving out the weight vector calculated by the algorithm (see Figure 7).

This block receives the general parameters of the algorithm:

• NBIT : wordlength Nbit, used for the description of the numbers in 2’s complement.

• ALPHA: number of bit dedicated to the fractional part (βF ).

• NSENS: number of antennas M .

• NRANK: rank P .

• TPD,TPD1,TPD2 : time delay of a register, an addition, a multiplication, respectively.

The blocks QR upd and BackSubs are described respectively in subsections 4.2.2 and 4.2.4.
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Figure 7: Scheme of Multirank QR.vhd

4.2.2 QR upd.vhd

This component performs the QR update seen in Equation (61) and (62). The parameter N R is the
number of elements of the upper triangular matrix Ř[n]. This number depends on M , that is the sensor
number (NSENS), and it can be determined by the numerical series:

N R =
M∑

k=1

k =
M(M + 1)

2
. (67)

The scheme of the block is represented in Figure 8, it contains M Giv Rot blocks (Section 4.2.3).
These blocks work in series.

The inputs of the block are:

• X: the data received by the system

• d: the desired signal

• R: the matrix Ř[n− 1] from the previous step

• p: the vector p̌[n− 1] from the previous step

The outputs of the block are:

• R: the matrix Ř[n] necessary for the next update

• p: the vector p̌[n] necessary for the next update

4.2.3 Giv Rot.vhd

This component performs the Givens rotations on the i-th row of matrix Ř[n], taking into account the
corresponding elements of p̌[n], x[n] and d[n].

This block works with one row of Ř[n], so it receives the parameter NROTthat indicates the number
of rotations that must be performed; this number corresponds to the number of elements of the selected
row of Ř[n], that is the same size as x[n].
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Figure 8: Scheme of QR upd.vhd

As the data arrive, the block C S Calc, described in Section 4.2.5, calculates the parameters c and
s as shown in Equation (73) and Equation (74). The operations performed on every element are done
simultaneously, as it can be seen in Figure 9.

The inputs of the block are:

• X: the data received by the system

• d: the desired signal

• R: the corresponding row of the matrix Ř[n]

• p: the corresponding element of the vector p̌[n]

The outputs of the block are:

• X: the modified data received by the system

• d: the modified desired signal

• R: the modified row of the matrix Ř[n]

• p: the modified element of the vector p̌[n]

4.2.4 BackSubs.vhd

This block operates the backward substitution. The backward substitution is the way of resolving the
system in Equation (47) with less computational effort. Let us define the system:





R1,1[n]w1[n] + R1,2[n]w2[n] + . . . + RM,M [n]wM [n] = p1[n]
R2,2[n]w2[n] + . . . + RM,M [n]wM [n] = p2[n]

...
RM,M [n]wM [n] = pM [n]

(68)

The first step of the backward substitution is

wM [n] =
pM [n]

RM,M [n]
, (69)

computed by the ComplexDiv block present in the Multirank QR block, as showm in Figure 7.
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Figure 9: Scheme of Giv Rot.vhd

The computed weight vector wM[n] is given as input to the first BackSubs block, that implements
the operation:

wM−1[n] =
pM−1[n]−RM−1,M [n]wM[n]

RM−1,M−1[n]
, (70)

obtained from
RM−1,M−1[n]wM−1[n] + RM−1,M [n]wM [n] = pM−1[n] (71)

The output of each block is the weight vector for to the next block, so that the equation solved in the
next block is:

RM−2,M−2[n]wM−2[n] + RM−2,M−1[n]wM−1[n] + RM−2,M [n]wM [n] = pM−2[n]. (72)

4.2.5 C S Calc.vhd

This component calculates the parameters c and s that are used in the Givens rotations.
The expressions calculated by this block are the ones reported in Equation (55) and Equation (56),

but the way these operations are computed is different from the theoretical case. R[n] has always the
same dimensions (M ×M ) because the zeros are not computed and x[n] is not considered as a row
of R[n], but as a separate vector.

Thus, the equations employed in the practical implementation are:

c[i] =
|R[i, i]|√

|R[i, i]|2 + |x[i]|2 (73)
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s[i] =
R[i, i]
|R[i, i]|

x∗[i]√
|R[i, i]|2 + |x[i]|2 (74)

These operations need a higher number of bits dedicated to the integer part of the data. That is due
to the squares calculated in the denominators of c[i] and s[i]. The square root takes the values back to
the usual range, so the output data can have the same number of bits used before.

The choice of the number of bits used for the integer part of the data inside this block is the double
of the one used outside the block. The number of bits dedicated to the fractional part remains the same.

4.2.6 Blocks for complex operations

The blocks listed hereafter have been developed for the operations with complex numbers. They are
general and can be used for any complex calculations in VHDL.

The real part and the imaginary part of each complex number are treated separately through parallel
vectors and connected to the block used for the operation.

However, while most blocks subdivide complex operations in elementary additions and multiplica-
tions, this cannot be done with the division and the square root operations. The implementation of
the blocks that calculate the division or the square root requires the knowledge of the device that will
be used for the synthesis of the VHDL code. The blocks that implement the divisions use the type of
variable real , which could be used only by components of higher level, like a DSP. The presence of
this type of variable does not permit synthesis at a lower level. The square root operation has been
divided in simple operations through the Newton-Raphson method, but it contains a division anyway,
so this component is subjected to the same problem explained before. The problem of the square root
can be solved using a Look Up Table (LUT), where all possible results could be memorized; this way is
practicable when the wordlength used for representing the input number is small enough to permit the
creation of a medium-size LUT.

Our empirical study of the data wordlength has shown that, while 13 bits have to be used for the
fractional parts of the generic data, just one bit is necessary to represent the integer parts of the square
root outputs. This is due to the fact that this quantization error becomes negligible. The wordlength for
the integer part has been found to be 6 bits, but for the radicand data it can be reduced to 5 bits, as
shown in Figure 10. We believe that a good trade-off between performance and space saving on the
device is to use 5+1 bits to represent the integer part and 2 bits for the fractional part of the LUT. Thus,
we must implement a LUT containing 28 = 256 words, each 8 bits long.

The blocks implemented for complex operations are the following:

• Reg.vhd - Register

• Reg N.vhd - Register with a parametric delay

• ComplexAdd.vhd - Adder for two complex numbers

• ComplexMult.vhd - Multiplier for two complex numbers

• Re Co Mult.vhd - Multiplier of a real number by a complex number

• SqAbs.vhd - It calculates the square absolute value of a complex number

• ComplexDiv.vhd - Divider for two complex numbers

• C on R Div.vhd - Divider of a complex number by a real number

• RealDiv.vhd - Divider for two real numbers

• Sq Root.vhd - It calculates the square root of a real number

• Reg.vhd - Register

• Reg.vhd - Register

• Reg.vhd - Register
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Figure 10: Differences between residual errors for different wordlength for the radicand data.

4.3 VHDL validation

The number of bits used for representing the values has been chosen according to the results discussed
in Section 3. We found out that a good trade-off between computational effort and quality of the results
was Nbit = 20, subdivided in:

• 1 bit dedicated to the sign

• 6 bits dedicated to the integer part (βI )

• 13 bits dedicated to the fractional part (βF )

The results of the hardware implementation follow the simulated ones, as shown in Figure 11, thus
demonstrating that the hardware implementation works correctly.

Another important issue is to estimate the delay of the outputs. The simulations use the following
parameters: rank P = 4 (number of pilots), M = 8 (sensors number). The total delay measured is
DTOT = 302TCK , where TCK is the clock beat and the delay introduced by the single operation is null
because it depends on the specific device used. Since the OFDM symbol duration assumed in our
system is 8 µs, it follows that the maximum clock beat for the device is

TCK =
TOFDM

DTOT
=

8 µs

302
= 26.48 ns (75)

and the minimum clock frequency necessary to compute all the steps of the algorithm within a symbol
interval is

fCK;min = 1/TCK = 37.765MHz. (76)

Nonetheless, since this result has neglected the operation delay, it must be intended as a lower bound
on the necessary clock frequency.

The parallelization of the calculations lead us to have a required frequency lower than the one seen
in Table 8, where the operations are supposed to be performed in series.
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Figure 11: Comparison of the normalized residual errors as a function of the time achieved by: VHDL
implementation (crossed line), Matlabr simulated quantization (circled line) and infinite precision im-
plementation (continuous line) of the Rank-4 QRD-RLS algorithm. Quantization is performed over
Nbit = 20 bits (6 + 1 + 13).

Performances of Multirank QRD-RLS in High Noise Conditions
Rank No. of Clock Residual error floor No. of symb. for

operations frequency [MHz] 1500-th symbol [dB] rank 1 steady-state
4 2660 332.5 −38.95 50

Table 9: Costs/benefits of QRD-RLS Multirank Algorithm, rank 4

5 Conclusions

In this report, an efficient implementation of the Multi-rank QRD-RLS algorithm has been analyzed to
overcome Doppler shift problems of a HAP-to-train transmission channel.

Choosing a Multirank QRD-RLS algorithm where the rank is 4 the performances are summarized in
Table 9.

The suitability of the algorithm to be implemented in programmable logic on an electronic device
with quantization errors has been demonstrated, since it overcomes the instability problems of classic
Multi-rank RLS formulations and has low computational effort.

The number of bits needed for representing the data is Nbit = 20 bits, independently of the rank,
subdivided in:

• 1 bit for the sign,

• βI = 6 bits,

• βF = 15 bits.

The logic block that computes Givens rotations necessitates of a longer wordlength, composed of N ′
bit =
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βI βF Multi-rank QRD-RLS
No. of bits No. of bits Mean difference Max. difference

6 + 1 13 −61.936 −55.377

Table 10: Differences between residual errors in infinite and quantized implementation of the algorithms,
as a function of βF and βI .

26 bits, β′I = 12 and β′F = βF bits. However, the data at the output of this block are represented again
over Nbit = 20 bits, without loss of precision.

The highest quantization error is due to the fractional part and can be seen in Table 10.
The implementation analysis discussed in this report takes into account an OFDM signal scenario,

where the rank of the beamforming algorithm is lower than or equal to the number of pilot subcarri-
ers in the transmitted signal. Nonetheless, it can be easily viewed as a direct extension of the algo-
rithm already discussed in the Capanina Deliverable D17 [1] for an IEEE 802.16 Single-Carrier system,
therefore the algorithm performance is, in some way, scalable with the number of (sub)carriers, and the
results of this reports are directly suitable to account for the Single-Carrier case.

The results of the VHDL synthesis demonstrate that the algorithm can efficiently work on a specific
programmable device (e.g., an FPGA), using the VHDL code developed. Considering a null operation
delay, the lower bound on the necessary clock frequency was found as fCK;min = 1/TCK = 37.765
MHz.
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